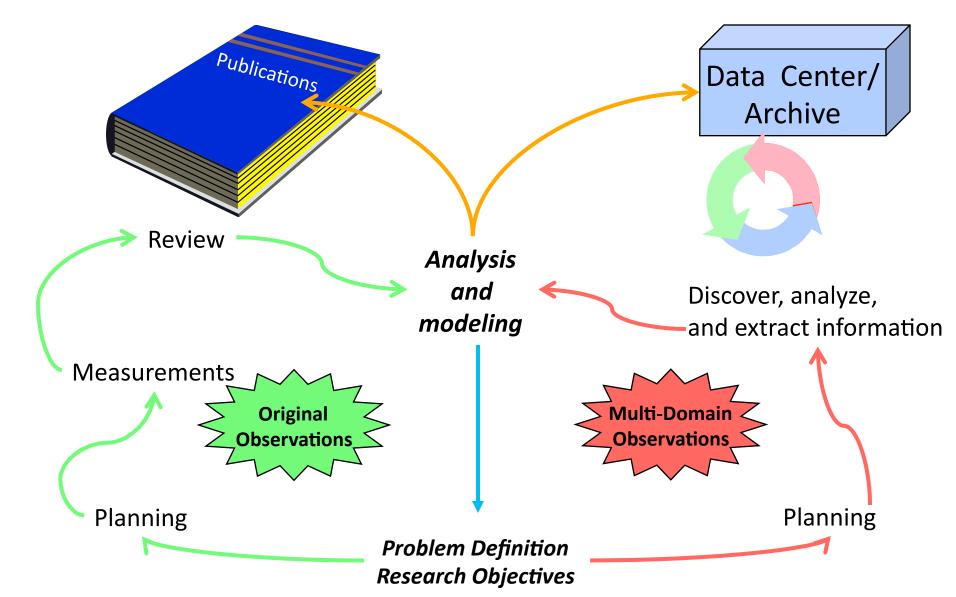
Data Stewardship and Reuse

Bob Cook

Environmental Sciences Division

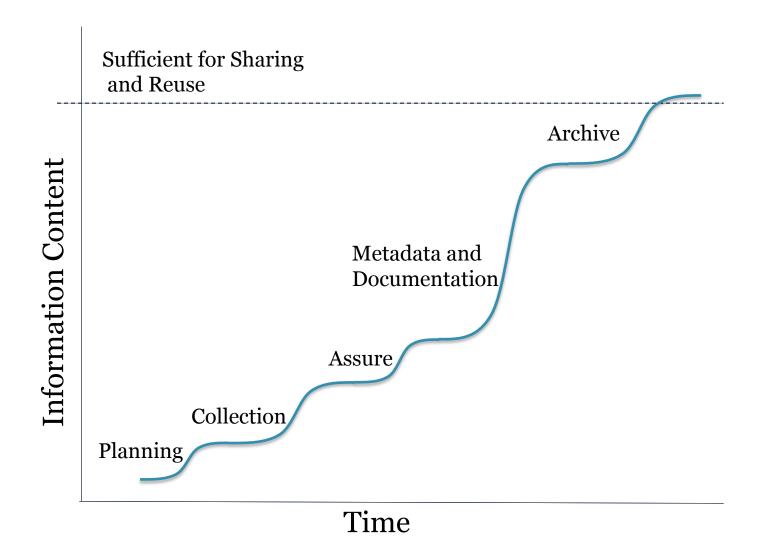
Oak Ridge National Laboratory

Email: cookrb@ornl.gov

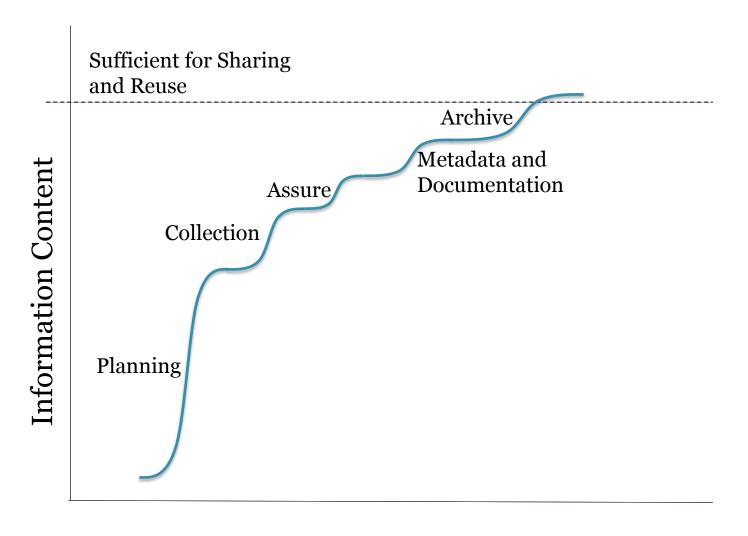


- Introduction
- Protection
- Archiving
- Sharing & Reuse

Cycles of Research – An Information View



The 20-Year Rule (NRC 1991)


The metadata accompanying a data set should be written for a user 20 years into the future--what does that investigator need to know to use the data?

Prepare the data and metadata / documentation for a user who is unfamiliar with the details of your project, methods, and observations

Proper Curation Enables Data Reuse

Proper Curation Enables Data Reuse

Introduction

Protection

Archiving

Sharing & Reuse

Data Protection: Backups

Create back-up copies

- Ideally three copies original, one on-site (external), and one off-site (e.g., Dropbox, Carbonite, etc.)
- Frequency based on need / risk

Know that you can recover from a data loss

Periodically test your ability to restore information

Data Protection: File transfers

Ensure that file transfers are without error

Compare checksums before and after transfers

Example tools to generate checksums

http://www.pc-tools.net/win32/md5sums/

http://corz.org/windows/software/checksum/

Introduction

Protection

Archiving
Sharing & Reuse

Data Center: Stewardship and Archive Functions

- Acquisition
 - identify how best to serve the scientific community
 - establish how and when to receive data
- Ingest
 - perform QA checks
 - compile project-provided metadata
 - convert to archivable file formats
- Enhance (as requested)
 - convert to standard formats & units
 - aggregate files
- Metadata / Documentation
 - Prepare final metadata record and documentation

- Archive / Publish
 - generate citation
- Exploration and Distribution
 - provide tools to explore, access, and extract data for users worldwide
- Post-Project Data Support
 - serve as a buffer between end users and PIs
 - provide usage statistics
- Stewardship
 - provide long-term secure archiving of the data
 - security, disaster recovery
 - migration to new computer systems

Choosing a Data Archive

Institution vs. science discipline archive

- Keep discipline data together
- Resources (\$)

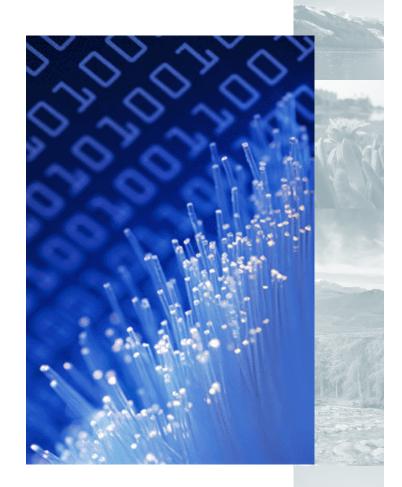
Functionality

- Discovery and access
- Specialized data types (geospatial data, genetic sequences, etc.)

Requirements

Data center's and project's requirements

- Introduction
- Protection
- Archiving
- Sharing & Reuse


Data Sharing & Reuse: Policies

US Funding agencies: Open Access

- NASA: no period of exclusive use
- NSF: reasonable time, charge user ≤ marginal cost of providing data
- NOAA: short period of exclusive use for QC/QA

Institution's Policy

Intellectual property

Data Sharing & Reuse: Restrictions

Protection policies and procedures for legitimate / appropriate needs based on data type

- privacy,
- confidentiality,
- intellectual property, or
- other security needs

Examples of Restricted Information

US Forest Service Forest Inventory and Analysis data

 Specific location of forest sample plot within each hexagon is restricted

Threatened and Endangered species data

Personally identifiable information

Data Sharing & Reuse: Citation

- Practice analogous to journal article citations
- Enable readers to find data products themselves
 - Reproduce the results
 - Use data for new hypotheses, constructing or evaluating models
- Add to data author's CV
 - Citation indices for the data publication
- Data authors get credit for the data publication and subsequent citations
- Can be used to show funders the impact of their research programs on the advancement of science
- Shows the scientific impact of data centers' data holdings

Data Sharing & Reuse: Citation (cont)

Elements of a data product citation:

- Authors
- Year of publication
- Data product title

- Data center
- Persistent Identifiers
- Date accessed / version number

Examples:

Sidlauskas, B. 2007. Data from: Testing for unequal rates of morphological diversification in the absence of a detailed phylogeny: a case study from characiform fishes. Dryad Digital Repository. doi:10.5061/dryad.20

Turner, D.P., W.D. Ritts, and M. Gregory. 2006. BigFoot NPP Surfaces for North and South American Sites, 2002-2004. Data set. Available on-line [
http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/750.

Benefits of Good Data Management Practices

Short-term

- Spend less time doing data management and more time doing research
- Easier to prepare and use data for yourself
- Collaborators can readily understand and use data files

Long-term (data publication)

- Scientists outside your project can find, understand, and use your data to address broad questions
- You get credit for archived data products and their use in other papers
- Sponsors protect their investment

Questions?

