
137

DOI: http://dx.doi.org/10.5769/C2011015

Abstract — Forensic programs, such as Guidance EnCase, allow
the use of hashes of known files, to ease the selection of files to
be analyzed or ignored in Computer Forensics examinations.
However, these same programs do not allow an effective
maintenance of their hash libraries. To remedy this deficiency,
the HashManager tool was developed, which is able to create,
manage and use libraries of millions of MD5 hashes in seconds.
HashManager allows the calculation of the union, intersection
and difference of hash libraries. These libraries are stored
and processed as simple text files, but HashManager is able to
convert them to the EnCase format, if needed. Hash libraries of
files related to child pornography have been built, with the aim
of increasing productivity in these types of examination. These
hash libraries, HashManager and other auxiliary tools are freely
available to the community of Computer Forensics.

Keywords — hash libraries, child pornography, pedophilia, MD5,
HashManager

1. Introduction
The computer forensic examinations use routinely file

hashes. Hashes are codes of fixed length, typically represented
in hexadecimal notation, resulting from the application of
algorithms (hash functions) on an original file of arbitrary size.

Two properties are important for the use of hashes. The
first is that the hash functions are one-way, i.e. one cannot
reconstruct the original file from its hash. The second is that
given a file x is computationally infeasible to find another
file y different from x that generates the same hash code.
These properties make the hash of a file to work as a kind of
fingerprint of it, i.e. a small code that uniquely identifies the
file. A good introduction on hashes is provided on [1].

Forensic tools such as Guidance EnCase or AccessData
FTK allow the use of hash libraries of known files, and their
comparison with the hashes of the files present in the case
being examined. There are two uses: files to be ignored (e.g.
files shipped with the operating system), and suspicious files
to be analyzed by the examiner (e.g. known pornographic
images involving children).

Despite the effective use of hash libraries, the same forensic
tools do not provide practical ways to manage custom libraries
of forensic hashes. They allow the import or update of third
party hash libraries, or the addition of hashes of files present
in the case being examined to libraries. Operations such as
intersection between libraries, or subtraction of one library
from another, are not available. This means that the expert
is dependent on third parties libraries, not possessing the
means to easily create and maintain their own hash libraries.

To meet these needs, as well as to allow hash analysis of cases
without the need for paid forensic tools, the HashManager
tool was developed. It allowed the creation and maintenance
of hash libraries related to child pornography, among other
applications. It was developed and improved by crime lab
experts to solve real problems found in everyday computer
forensic examinations.

Section II analyzes the existing tools for the management of
hashes. Section III presents HashManager and some auxiliary
tools that increase its scope of use. Its application, especially
in cases of child pornography, is presented in Section IV.
Conclusions and future work are presented in Section V.

2. Existing Tools
The hash function adopted by HashManager is MD5.

Although now no longer safe enough for cryptographic
applications, it is widely used by forensic tools and hash libraries
in the public domain. Besides, in comparison with other hash
functions, its calculation time is one of the fastest [1].

There are several tools that can calculate MD5 hashes
for both Windows and Linux systems. For Linux, there is
the native command “md5sum”, which calculates the MD5
hash of a single file. Used in combination with the native
command “find”, one can generate a text file containing the
hashes of the files present in a folder and its subfolders. For
the Windows system, there are the free applications “fsum”
and “corz checksum”, among others. Both of them generate
text files compatible with those generated by the “md5sum”
command. Another useful tool is “md5deep”, which can be

Creation and Maintenance of MD5
Hash Libraries, and Their Application

in Cases of Child Pornography

Alexandre Vrubel
Computer Forensics Laboratory

Criminalistics Institute of Curitiba - Paraná
Curitiba, Brazil

alexandre.vrubel@ic.pr.gov.br

138

used to create and check hashes on both Windows and Linux
systems.

A forensic tool related to hash analysis is the command
“hfind” from “The Sleuth Kit” package, and its “Autopsy”
interface. This package offers a free set of forensic tools, and
is mainly used in Linux. The “hfind” command allows the
import and indexing (sorting) of hash libraries, and optimized
searches of a list of hashes within a library previously indexed.

The problem with all those tools is that they were not
designed with the idea of management of hash libraries in
mind. Therefore, they are useful to create, check and calculate
hashes of files, but not to make operations between hash
libraries. What was wanted was a tool which understands
hash libraries as sets, and performs basic operations between
these sets, such as union, intersection and difference. i.e.,
given two input libraries, perform an operation between
them and generate a new library as a result. No tool with
these characteristics was found in our research.

For the hash libraries themselves, there are NSRL and
HashKeeper. The NSRL (National Software Reference
Library) is a project of the U.S. Department of Defense that
collects hashes of software installation media, and currently
offers over 19 million hashes of known files. This library, by
law, does not contain illegal files such as images and videos
relating to child pornography. On the other hand, HashKeeper
was a project of the U.S. National Drug Intelligence Center,
which collected MD5 hashes of known files, even illegal,
to assist criminal investigations. However, the project was
discontinued. In practice, obtaining hash libraries of files
relating to child pornography is not easy for forensic experts.

As for the forensic tools aimed at investigations of child
pornography, some highlights are “NuDetective”, from
Brazilian Federal Police [2], and Bluebear’s LACE (Law
Enforcement against Child Exploitation). Both tools use hash
libraries as part of the techniques for identifying images and
videos related to child pornography.

3. Hash Manager
The HashManager tool was developed at the Computer

Forensics Laboratory of the Criminalistics Institute of
Curitiba-PR, in order to remedy the shortcomings cited in
Section II. Since 2011, the tool became part of the standard
procedures in several examinations, particularly those relating
to child pornography, as will be presented in Section IV.

HashManager was developed in C++ as a command line
application (without a GUI). This simplified the portability of
it, with compiled versions for Windows and Linux available.

MD5 hash libraries are stored in text files, using the
“md5sum” standard format adopted by the several tools cited
in Section II. Basically, each line of text file begins with the 32
hexadecimal characters of the MD5 hash, optionally followed
by the name of the file that generated the hash. Lines that do
not follow this pattern are ignored and treated as comments.

This format has several advantages: hash libraries can be
created, read or edited manually in any text-file editor; and
they are easily processed by other tools, such as operating
system shell scripts or scripts executed by forensic tools such
as Guidance EnCase (EnScripts).

HashManager treats the hash libraries as sets, allowing
operations such as union, intersection and difference, among
others. The HashManager command line syntax is as follows:
“hashmgr <operation> <1 or 2 input files> <output file>”.
Table I lists the supported operations. According to the
chosen operation, it takes one or two input text files, each
containing a set of MD5 hashes. The last argument is always
the name of the resulting text file. There is no restriction in
using one of the input files as the target of the operation.

The resulting text file from the operations of HashManager
has always its hashes sorted in ascending order. In cases of
hashes with the same value, the line used comes from the first

TABLE I. Operations supported by HashManager.

Operation Description

sort
Sorts the hashes of the input file
in ascending order, eliminating
duplicates

sort2
Sorts the hashes of the input file
in ascending order, preserving
duplicates

add or merge
Calculates the union of the hashes of
two input files, generating an output
file without duplicates

inboth or
intersection

Computes the intersection of
the hashes from two input files,
generating an output file without
duplicates

inboth2 or
intersection2

Computes the intersection of
the hashes from two input files,
generating an output file that
preserves the duplicates of the 1st
input file

sub

Eliminates from the 1st input file
hashes present in the 2nd input file,
generating an output file without
duplicates

sub2

Eliminates from the 1st input file
hashes present the 2nd input file,
generating an output file that
preserves the duplicates of the 1st
input file

encase
Converts the input file to a binary
output file used by the forensic tool
EnCase

hsh
Converts an input file in HSH format
(HashKeeper) to an output file in
text format

strip Deletes the optional file names of
each line of the input file

139

input text file. Input files are sorted automatically if necessary.
Text files in Unicode format (where all characters are encoded
in 16 bits) are still not supported, and must be first converted
to UTF-8 encoding, for example.

A. Algorithmic Analysis
One of the design goals of HashManager was its ability to

manage huge hash libraries, i.e. text files containing millions
of lines. In addition, the tool should be fast enough to be of
practical use.

The ordering of the input data is important to speed up
operations of the tool. Consider two input files with n and
m hashes, respectively. If these hashes were not ordered, we
would need to compare each one of the n hashes of the first file
with all m hashes the second file to perform the operations of
intersection, difference and union, which it is an algorithm of
quadratic time complexity O(n × m). On the other hand, for
sorted input files all three operations examine each hash only
once (single pass), in an algorithm of linear time complexity
O(n + m). This method of combining two sorted lists to
generate the desired result of the operation is similar to the
core of the mergesort algorithm [3].

The fact that MD5 hashes have a fixed length of 32
hexadecimal characters allowed the use of the radix-sort
algorithm to sort the input hashes. This algorithm has
linear time complexity O(n), being asymptotically faster
than the commonly used quicksort algorithm, which has
time complexity O(n log n). Moreover, the worst case time
complexities for the radix-sort and quicksort are respectively
O(n) and O(n²). In-depth analysis of the radix-sort and
quicksort can be found in [3].

Thus, the overall time complexity of HashManager is a linear
O(2n + 2m) for any operation involving two input files, already
taking into account the operations of sorting through radix-
sort of both input files. If the input files are already pre-sorted,
this condition is detected during their loading and sorting is
omitted, speeding up the execution of the tool to a O(n + m)
time complexity.

To optimize disk access operations, the input files are
read entirely into memory, and then analyzed. Despite
limiting the maximum size of the input files, this approach
causes no problems in practice, as a library with more than
19 million hashes has an input file of about 624 MiB of size,
which represents a memory cost fully acceptable for current
computers.

The adopted data structure consists of arrays of pointers,
which point directly to the hash strings in the image of the
input file saved in memory. For sorting by radix-sort, only the
pointers switch positions in the vector, which prevents the
movement of large blocks of memory. Likewise, results of the
operations between two input files are represented by an array
of pointers to the lines of the input text files already in memory.
Thus, the resulting output file does not spend additional space
in memory other than the array of pointers.

Runtime results of HashManager can be seen in Table II.
The computer used in the tests was a PC with a Core i7 3.4
GHz processor, 16 GiB of RAM and a Windows 7 Home
Premium 64-bit operating system. The code was compiled
using Microsoft Visual C++ Express Edition 2010. It can be
noted that even when performing operations on very large
libraries, the response time of HashManager is fully acceptable.
Its performance in real cases is even better, as a typical case
usually has ten to one hundred times less hashes than the
amount tested here.

TABLE II. Execution times of HashManager

Operation
Number of hashes Time in

seconds input output
sort 15,858,540 4,813,472 40.18

add 4,813,472
4,812,512 9,625,984 22.06

intersection 19,248,432
6,155,774 3,297,701 28.55

sub 6,155,774
19,248,432 2,858,073 29.63

encase 19,248,432 19,248,432 27.67
hsh 15,858,540 15,858,540 29.92
strip 19,248,432 19,248,432 27.91

B. Auxiliary Tools
HashManager is not used alone when performing the

analysis of forensic cases. Usually, it is part of a procedure, and
other additional tools were developed to further explore the
potential of HashManager. They are:

1)	 EnScript for EnCase called BookmarkFromHashList
(currently available for versions 4 and 5 of EnCase): This
EnScript reads a text file containing hashes (possibly
resulting from HashManager), and marks the files of
the case that have the hashes present in the text file into
a bookmarks folder specified by the user. It is often used
when multiple files are extracted from EnCase for analysis
in other applications. After this analysis outside of EnCase,
some files may be pertinent to the case being investigated.
Now there is the need to select these files again within
the EnCase environment. To avoid the manual search for
these files from the thousands of files commonly found in
a typical case, the script BookmarkFromHashList is used;

2)	 Export Option of EnCase: This native option can become
very useful when used in combination with HashManager.
It allows the export of metadata of selected files in a case
to an output text file. In this case, the fields exported are
“HashValue” and “FullPath”, which are exported for some
(or all) files of the case. The resulting text file is in encoded
in Unicode format, and after being converted to UTF-8
encoding (e.g. with Notepad), it can be used as a input
parameter for HashManager;

3)	 Shell script for Linux called “hashcp.sh”: This script reads
a text file (usually resulting from HashManager) that
follows the “md5sum” convention, i.e. lines with a hash
followed by the file name that originated it. The script

140

discards the hashes and comment lines, keeping only
the paths and files names, and then copies these files to
a specified folder. There are variations of this shell script,
called “hashrm.sh” and “hashmv.sh”, which respectively
delete or move files listed within the text file instead of
copying them. These three scripts are useful in procedures
using HashManager for exclusion or separation of files, as
described in Section IV.

4. Applications
Following are presented some types of examinations using

HashManager, and their technical procedures as adopted in the
Computer Forensics Laboratory of the Criminalistics Institute
of Curitiba-PR.

C. Child Pornography
These examinations typically have a standard question that

is: “There are, in the equipments sent for examination, images
or videos with pornographic content involving children or
adolescents?” If the answer to this question is yes, then other
questions are answered, such as whether the files were shared
on the Internet. There are two typical scenarios when these
types of files are found: or they were created by the users of
the equipment being analyzed, or they were obtained from
third parties, usually through the Internet. Hash libraries are
useful only for the second case, where the same files are copied
between different users.

For the classification of the biological maturation of
individuals present in the images and videos, the experts use
the criteria proposed by Bonjardim and Hegg [4], according
to the stages presented by Tanner [5], and following the
recommendations proposed by Amorim [6]. It should be
noted that there is an age range (from about 14 to 18 years
old), where the classification of person as a minor may not be
conclusive. This happens because some individuals reach the
last stage of biological maturity of the genital areas and the
hairy distribution before 18 years of age.

Using HashManager, two hash libraries related to child
pornography were created. The first (“pedophilia.txt”) consists
of hashes of image files or videos undoubtedly involving
children or adolescents. Such files possess a conclusive and
reliable classification, as they were found in real cases analyzed
by the experts of the Criminalistics Institute of Curitiba-PR,
with each file having been examined and classified individually.

The second library (“suspicious.txt”) was built by merging
hashes related to child pornography obtained from various
sources, such as the “NuDetective” tool from the Brazilian
Federal Police [2]. In addition to these third party hashes, files
whose age classification is not conclusive are also found in this
library. Despite possessing a huge amount of hashes (more
than 1.2 million), some false positives can found when using
this library, mainly due to the fact that most of these hashes
have been obtained from third parties, without the analysis of
image files or videos from which they were obtained. As they

are detected in real cases, false positives are eliminated from
the library, and files for which their classification is conclusive
are deleted from the “suspicious.txt” library and added to the
confirmed “pedophilia.txt” library. Both libraries have hashes
of compressed files that have been shared on the Internet (ZIP,
RAR, 7Z, etc.), containing relevant images or videos.

The library of known hashes from the NSRL (see Section II)
was also converted to the format used by HashManager (“nsrl.
txt”), to discard files that are not related to child pornography
during examinations.

The procedures used in child pornography examinations are
as follows. It should be noted that Linux and Windows tools
are used simultaneously. This is accomplished using virtual
machines running Windows over an Ubuntu Linux host. The
main used tool is EnCase, after the acquisition of the case
evidence files from the source devices.

1.	 Hashes of all files present in the case being analyzed
are exported from EnCase (see Section III.B.2). The
intersection of the hashes exported with the libraries
“pedophilia.txt” and “suspicious.txt” is calculated, using
the operation inboth of HashManager. If there are
intersections, they are marked within EnCase with the
EnScript BookmarkFromHashList (see Section III.B.1),
and the bookmarked files are exported and analyzed.
This first step already provides an idea of what will be
found in the case under consideration. This sequence
of operations is used because EnCase becomes very
sluggish if the “suspicious” library, containing more
than 1.2 million hashes, were used directly as a Hash Set
within EnCase.

2.	 The other images and videos are exported from EnCase.
To avoid analysis of non-relevant files, hashes of the
exported files are computed with “md5sum” or any
equivalent tool. Then the intersection of these exported
hashes with the “nsrl.txt” library is calculated using the
operation inboth2 of HashManager. With the shell script
“hashrm.sh” (see Section III.B.3), files known through
NSRL are deleted, leaving only the files that need to be
analyzed and classified individually.

3.	 The acquisition files in EnCase format (E01) are
converted to a single file in the raw format (DD). This file
serves as input to the “foremost” tool [7], used to recover
deleted images and video. This step aims at detecting
files embedded inside other files, and deleted files whose
directory entries had already been overwritten, which
hindered their recovery by EnCase.

4.	 To prevent the re-analysis of the files present in EnCase,
the hashes of the files recovered through “foremost” are
calculated with “md5sum” or any equivalent tool. Then
the intersection between these “foremost” hashes and the
EnCase hashes exported in step 1 is calculated using the
operation inboth2 of HashManager. With the shell script
“hashrm.sh”, the already examined files from EnCase are
excluded from the output folder of “foremost”. A similar
procedure is performed to eliminate files possessing

141

known hashes from the NSRL library from the output
folder of “foremost”.

5.	 The text file containing the hashes of the “foremost”
output folder (generated in step 4) is updated through the
subtraction of the EnCase and NSRL hashes, using the
sub2 operation of HashManager. Then the intersection of
the updated file with the “suspicious.txt” and “pedophilia.
txt” libraries is calculated with HashManager, in order to
identify illegal files in the output folder of “foremost”. If any
illegal files are found, they are moved to another folder
with the shell script “hashmv.sh” (see Section III.B.3).
The remaining files in the output folder of “foremost” are
analyzed individually.

6.	 An optional step before the analysis of individual files is to
remove duplicate files from the export folders of EnCase
or “foremost”. That can be accomplished through the sort
operation of HashManager, which removes duplicates
from a source hash list. The resulting hash list can then
be used with “hashmv.sh” or “hashcp.sh” to respectively
move or copy the “unique” files to another folder for
examination.

7.	 Hashes of illegal files found during the analysis are added
to the appropriate libraries with the add operation of
HashManager. False positives or reclassifications of files
also cause updates to the libraries.

Those procedures may seem complex, but the net result on
the quality and productivity of child pornography examinations
is very positive. Two complementary techniques of file recovery
are performed (directory-based with EnCase, and file carving
through “foremost”), and several possible types of known files
(“pedophilia.txt”, “suspicious.txt” and “nsrl.txt”) are used to
reduce the number of files that should be individually analyzed.

D. Search for specific files
The HashManager and other auxiliary tools presented in

Section III work as a “Swiss army knife” for examiners, allowing
their application in many cases, not necessarily just child
pornography.

As presented in Section IV.A, HashManager can be used
to eliminate known or already analyzed files from files
recovered with the “foremost” tool, regardless of the case under
consideration.

Another case where HashManager was applied was to search
for specific files, sent in a CD, on different equipments. After
calculation of the hashes of the media files and hard drives, the
intersection operation of HashManager was used to perform
the search.

5. Conclusion
This paper presented the features of HashManager and other

auxiliary tools. Its main application has been the search of files

relating to child pornography, as presented in section IV.A. Its
use has increased efficiency in these examinations, allowing
the automatic identification of files already found in previous
cases. The tool is very versatile and is also used in other types
of examinations.

Some possible future works are:

•	 The creation of a graphical interface for HashManager,
making it friendlier to users;

•	 Add support to hash libraries larger than the amount of
available memory;

•	 Allow the use of other hash algorithms such as SHA1 or
SHA256;

•	 Enhance the NSRL library of known hashes with post-
installation images and videos related to the operating
system or other widely used applications, or the result of
web browsing, found during the examinations;

•	 Integration of other existing libraries, related to either
child pornography files or files to be ignored.

The HashManager tool is being supplied with its source
code, along the hash libraries mentioned in the paper, free of
charge. Just contact the author by the e-mail alexandre.vrubel@
ic.pr.gov.br, requesting access to the tools and hash libraries. It is
hoped this will contribute to improve the quality and efficiency
of the computer forensics examinations.

Acknowledgment
The author would like to thank: the managers of the

Computer Forensic Laboratory for their support to the creation
and improvement of the tools and hash libraries presented in
this paper; all the forensic experts of the Computer Forensic
Laboratory, for their suggestions and help testing the tools;
and Itamar Almeida de Carvalho, forensic expert from the
Brazilian Federal Police, for sharing the MD5 hashes used in
the “NuDetective” tool.

References
[1]	 RSA Laboratories, “Frequently asked questions about today’s

cryptography - Version 4.1”, RSA Security Inc., 2000.
[2]	 P. Eleutério and M. Polastro, “Optimization of automatic nudity detection

in high-resolution images with the use of NuDetective forensic tool”, 5th
ICoFCS: Brasília, 2010.

[3]	 T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to
Algorithms”, 3rd Ed MIT Press, 2009. ISBN 978-0262033848.

[4]	 E. Bonjardim and R. V. Hegg, “Crescimento e desenvolvimento
pubertário em crianças e adolescentes brasileiros”, São Paulo: Brasileira
de Ciências, 1988.

[5]	 J. M. Tanner, “Growth at adolescence with a general consideration of
the effects of hereditary and environmental factors upon growth and
maturation from birth to maturity”, 2nd ed. Oxford: Blackwell Scientific
Publications, 1962.

[6]	 F. L. P. Amorim, “Definição de Parâmetros de Análise de Imagens Digitais
Relacionados à Pedofilia”, XX Congresso Nacional de Criminalística e III
Congresso Internacional de Perícia Criminal: João Pessoa, 2009.

[7]	 J. S. Nascimento and K. S. Jerônimo, “Análise de Ferramentas Forenses
de Recuperação de Dados”, V Seminário Nacional de Perícias em
Informática: Palmas, 2010.

Alexandre Vrubel holds a Master’s degree in Computer Science from the Federal University of Paraná, and is also a graduate in Informatics from the Federal
University of Paraná. Currently works as a forensic expert in the Computer Forensics Laboratory of the Criminalistics Institute of Curitiba - Paraná.

